Robust Mean-Conditional Value at Risk Portfolio Optimization
نویسندگان
چکیده
In the portfolio optimization, the goal is to distribute the fixed capital on a set ofinvestment opportunities to maximize return while managing risk. Risk and return are quantiti es that are used as input parameters for the optimal allocation of the capital in the suggested models. But these quantities are not known at the time of the formulation and solving problem. Thus they shou ld be estimated to solve the problem which might lead to large error. One of the widely used approaches to deal with such a situation, is robust optimization. In this paper we study the meanConditional Value at Risk (M-CVaR) portfolio selection problems under the estimation risk in mean return for both interval and ellipsoidal uncertainty sets. Equivalent formulations of the robust counterparts are given. At end an example is given to demonstrate the impact of uncertainty.
منابع مشابه
Robust portfolio selection with polyhedral ambiguous inputs
Ambiguity in the inputs of the models is typical especially in portfolio selection problem where the true distribution of random variables is usually unknown. Here we use robust optimization approach to address the ambiguity in conditional-value-at-risk minimization model. We obtain explicit models of the robust conditional-value-at-risk minimization for polyhedral and correlated polyhedral am...
متن کاملRobust Portfolio Optimization with risk measure CVAR under MGH distribution in DEA models
Financial returns exhibit stylized facts such as leptokurtosis, skewness and heavy-tailness. Regarding this behavior, in this paper, we apply multivariate generalized hyperbolic (mGH) distribution for portfolio modeling and performance evaluation, using conditional value at risk (CVaR) as a risk measure and allocating best weights for portfolio selection. Moreover, a robust portfolio optimizati...
متن کاملThree steps method for portfolio optimization by using Conditional Value at Risk measure
Comprehensive methods must be used for portfolio optimization. For this purpose, financial data of stock companies, inputs and outputs variable, the risk measure and investor’s preferences must be considered. By considering these items, we propose a method for portfolio optimization. In this paper, we used financial data of companies for screening the stock companies. We used Conditional Value ...
متن کاملPortfolio Optimization Based on Cross Efficiencies By Linear Model of Conditional Value at Risk Minimization
Markowitz model is the first modern formulation of portfolio optimization problem. Relyingon historical return of stocks as basic information and using variance as a risk measure aretow drawbacks of this model. Since Markowitz model has been presented, many effortshave been done to remove theses drawbacks. On one hand several better risk measures havebeen introduced and proper models have been ...
متن کاملOptimal Portfolio Selection for Tehran Stock Exchange Using Conditional, Partitioned and Worst-case Value at Risk Measures
This paper presents an optimal portfolio selection approach based on value at risk (VaR), conditional value at risk (CVaR), worst-case value at risk (WVaR) and partitioned value at risk (PVaR) measures as well as calculating these risk measures. Mathematical solution methods for solving these optimization problems are inadequate and very complex for a portfolio with high number of assets. For t...
متن کاملبهکارگیری بهینه سازی استوار در مساله انتخاب سبد سهام با افت سرمایه در معرض خطر مشروط
Portfolio selection problem is one of the most important problems in finance. This problem tries to determine the optimal investment allocation such that the investment return be maximized and investment risk be minimized. Many risk measures have been developed in the literature until now; however, Conditional Drawdown at Risk is the newest one, which is a conditional risk value type problem. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013